II. Properties of the nucleus

Lorant Csige

Laboratory for Nuclear Physics Hungarian Academy of Sciences

Nuclear radii and densities I.

- Rutherford formula is not satisfactory at large angles (small impact parameters)
- Deviation is due to finate nuclear size \rightarrow strong force beside Coulomb (increasing with energy)

Nuclear radii and densities II. - e- scattering

- R. Hofstadter: measuring the charge distribution with fast ($100-500 \mathrm{MeV}$ relativistic) electron elastic scattering

$$
E=\sqrt{(p c)^{2}+\left(m_{0} c^{2}\right)^{2}} \simeq p c \longrightarrow \lambda=\frac{\hbar}{p}=\frac{\hbar c}{E} \approx \frac{200}{E(M e V)} f m
$$

- Elastic scattering: $p^{\prime}=p$, the direction may change only $\rightarrow \Delta p=\hbar q$

$$
4-\frac{2 E^{2}-\frac{i n}{n} \frac{1}{2}}{}
$$

Nuclear radii and densities III. - Mott formula

- Mott: cross section for point-like nucleus

$$
\sigma_{M}(\vartheta) \simeq\left(\frac{Z e^{2}}{2 E}\right)^{2} \frac{\cos ^{2} \frac{\vartheta}{2}}{\sin ^{4} \frac{\vartheta}{2}}
$$

- For finite-size nucleus: form factor F(q)

$$
\sigma(\phi)=\sigma_{M}(\phi)|F(\vec{q})|^{2}
$$

- In case of $\rho(r)$ charge density with spherical symmetry:

$$
F(q)=\int \rho(r) \frac{\sin (q r)}{q r} d v
$$

Nuclear radii and densities V.

- $\mathrm{E}<100 \mathrm{MeV}: \mathrm{q} \ll 1 / \mathrm{R} \rightarrow \mathrm{qr} \ll 1$

$$
F(q)=\int q(r) \frac{q r-\frac{(q r)^{3}}{3!}+\ldots}{q r} d v=1-\frac{q^{2}\left\langle r^{2}\right\rangle}{6}+\ldots
$$

mean quare radii (root is rms radii)

Modelindependent !!

Nuclear radii and densities - VI.

- E>100 MeV: approximation is no longer satisfactory (senitive to nuclear charge distribution) \rightarrow using model functions to describe the shape of the charge distribution (large λ, good resolution allows!!) \rightarrow fitting the function to extract the parameters
- e.g Fermi function : no sharpe edge of nucleus

Fig. 27. The square of the form factor plotted against $q^{2} \cdot q^{2}$ is given in units of $10^{-26} \mathrm{~cm}^{2}$. The solid line is calculated for the exponential model with rms radii $=0.80 \times 10^{-13} \mathrm{~cm}$.

Nuclear radii and densites IV. - Form factors

"wn	-	\%
\cdots		
" ${ }^{\text {a }}$	(9) $)^{(3)}$ (${ }^{\text {a }}$)	\%erso
\cdots	nomen	$\left({ }^{\prime \prime}\right)^{\prime \prime}$
" ${ }_{\text {n }}$	(ex	(20)(
${ }^{*}$.-.	${ }^{3}$	
	\%romer (a)	
\times x mamem		(
\cdots		
${ }^{11}$	为	$\left(\sim^{\text {a }}\right)^{\prime}$

Nuclear radii and denstities VII.

- Characteristic X-ray spectroscopy of muonic atoms
- $m_{\mu}=207 m_{e}$
- Bohr radius is 1/207 smaller (at given n)
- Wavefunction of nucleus and $1 s_{1 / 2}$ is overlapping \rightarrow energy is depending on the size of nucleus $\left.\rightarrow<r^{2}\right\rangle$
- Fitch and Rainwater (1953)

- Optical isotope shift:
- only technique for radiactive nuclei
- $\left.\Delta v_{12} \rightarrow \delta_{12}<r^{2}\right\rangle$
- relative measurement

Nuclear radii and density: results

- No sharp endges of nuclei: charge density is dropping „smoothly"

$$
R(N, Z)=\sqrt{\left\langle r^{2}\right\rangle} \quad \text { RMS radii }
$$

- Stable isotopes

$$
R_{s t}=r_{0} A_{s t}^{1 / 3}, \text { where }_{0} \simeq 0.95 \mathrm{fm}
$$

- Non-stable isotopes

Nuclear radii and density: results

- most recent compilation for non-stable nuclei

Isotopic dependence
Isotonic dependence

Mass of nucleus I.

- Magnetic mass spectrometers
- Dempster (1918): direction focusing

$$
1 \mathrm{amu}=\frac{1}{12} m_{1^{12} \mathrm{C}}
$$

- Fixed V: magnetic spectrograph

$$
\frac{M_{1}}{M_{2}}=\frac{R_{1}^{2}}{R_{2}^{2}}
$$

Relative measurements

- Fixed R: magnetic spectrometer

$$
\frac{M_{1}}{M_{2}}=\frac{V_{2}}{V_{1}}
$$

Relative measurements

Magnetic spectrographs: high resolution spectroscopy today

- Split-pole spectrograph at Debrecen

Scattering chamber

- Q3D spectrograph at Munich

Mass of nuclei II.

- Penning trap
- cyclotron motion: Lorentz motion by a B magnetic field x velocity (ω_{c})
- axial motion: vertical component of E quadrupole electrostatic field (ω_{a})
- magnetron motion: horizontal component of E field $\left(\omega_{m}\right)$

- Good for radioacive isotopes!!!

$$
\frac{M_{1}}{M_{2}}=\frac{\omega_{c 1}}{\omega_{c 2}} \quad \quad \quad \mathrm{M} / \mathrm{M}=10^{-10}
$$

Mass of nuclei III.

- Neutral nuclei: e.g. mass of neutron? (magnetic spectrometers are not good)
- Solution: energy balance of nuclear reactions

$$
A+B \rightarrow C+D
$$

$$
\left(M_{A}+M_{B}\right) c^{2}+E_{A}+E_{B}=\left(M_{C}+M_{D}\right) c^{2}+E_{C}+E_{D}
$$

$$
\begin{aligned}
& p+n \rightarrow d+y \quad \text { the neutron mass can be extracted } \\
& M_{p}=938.3 \mathrm{MeV}=1836.1 \times m_{e} \quad M_{n}=939.6 \mathrm{MeV}=1838.6 \times \mathrm{m}_{e}
\end{aligned}
$$

- energy balance of alpha and beta decay: $\mathrm{dE}_{\mathrm{a}}=5 \mathrm{keV} \rightarrow \delta \mathrm{M} / \mathrm{M}=10^{-8}$
- microwave spectroscopy of rotational levels of molecules

Mass of nuclei IV.: binding energy

- Binding energy from masses: $E_{k}(Z, A)=\left[Z M_{p}+(A-Z) M_{n}-\right.$ $M(Z, A)] c^{2}$
- Experimental findings $\rightarrow \mathrm{E}_{\mathrm{k}} \sim \mathrm{A}$
- Binding energy/nucleon $\rightarrow \varepsilon(Z, A)=E_{k} / A \approx 8 \mathrm{MeV} /$ nucleon

- binding energy is saturated \rightarrow short range nuclear force
- fission and fusion

More properties:
pairing effect (only 4 stable odd-odd nuclei!!!

Magic numbers: Z or/and N
$=2,8,20,28,50,82,126 \rightarrow$ nuclear shell model

The nuclear landscape

- Nucleon-stablity: nucleon separation energy is positive $\left(\mathrm{S}_{\mathrm{n}}>0\right.$ and $\left.\mathrm{S}_{\mathrm{p}}>0\right)$
- 6-7000 nuclei (known $\sim 2830, \beta$-stable ~ 280)

- Exotic nuclear radii and densities near the drip lines: halo-nuclei!

Nuclear moments: spin and magnetic moment

- Fine structure of spectral lines \rightarrow spin and magnetic moment of e
- Hyperfine structure of spectral lines \rightarrow spin and magnetic moment of nucleus

Brief overview on the e- spin and magnetic moment

- Interaction of the magnetic moment of e- and the magnetic field by the e- motion in atoms

$$
U=-\vec{\mu}_{s} \vec{H}_{e}
$$

- Given $s \rightarrow 2 s+1$ different U value
- Only valence electrons attribute to $\mu_{\mathrm{s}} \rightarrow 1$ valence electron \rightarrow doublet spectral line

$$
\begin{aligned}
& \mu_{s}=\frac{e \hbar}{2 m_{e} c} \\
& s=\frac{1}{2} \hbar
\end{aligned}
$$

Nuclear moments: spin and magnetic moment

- Pauli (1928) hyperfine structure of spectral lines \rightarrow nucleus has spin and magnetic moment!
- Spin:

$$
|\vec{I}|=I(I+1) \hbar^{2}
$$

l is non-negative integer or half-integer

$$
(\vec{I})_{z}=m \hbar \quad(m=I, I-1, \ldots,-I)
$$

multiplicity: $M=2 /+1$ different m values

$$
g=\frac{\mu / \mu_{p}}{I} \quad g \text {-factor }
$$

$$
\mu_{p}=\frac{e \hbar}{2 m_{p} c}=\frac{m_{e}}{m_{p}} M_{B} \quad \text { magnetic moment of proton }
$$

$$
U=-\vec{\mu} \vec{H}_{e}=\mu a \frac{\vec{J} \vec{I}}{|\vec{J}||\vec{I}|}
$$

- If J>/ counting spectral lines \rightarrow multiplicity M from spectrum (different $m \rightarrow$ different energy) \rightarrow I

Nuclear moments: magnetic dipole

- Rabi (1939)

- Results:
- $S_{p}=1 / 2 \hbar$ and $S_{n}=1 / 2 \hbar$
- anomal magnetic moment: $\mu_{p}=2.79 \mu_{N}$ and $\mu_{n}=-1.91 \mu_{N}$
- ${ }^{2} \mathrm{H}: \mathrm{s}=1 \hbar$ and $\mu=0.86 \mu_{\mathrm{N}} \rightarrow$ spins are parallel \rightarrow nuclear force is spin dependent
- Even-even nuclei \rightarrow spins and magnetic moments are zero!! (in ground state) \rightarrow pairing effect is important

Nuclear moments: electric quadupole moment

- Due to mirror symmetry \rightarrow no electric dipole (and any odd order) momentum!
- Deviations in the hyperfine structure of spectral lines
- Solution: sometimes $\rho(r)$ has no spherical symmetry! \rightarrow electric quadrupole moment \rightarrow measures the deviation from spherical symmetry

$$
Q_{0} \equiv \int \rho\left(\vec{r}^{\prime}\right)\left(3 z^{\prime 2}-r^{\prime 2}\right) d v
$$

($x^{\prime}, y^{\prime}, z^{\prime}$) system of the nucleus z^{\prime} is the projection of r^{\prime} on the symmetry axis

$$
Q_{s p}(g . s .)=\frac{I(2 I-1)}{(I+1)(2 I+3)} Q_{0} \quad \mathrm{Q}_{\mathrm{sp}} \text { is a "projection" of } \mathrm{Q}_{0}
$$

$$
Q_{s p} \equiv \int \rho(\vec{r})\left(3 z^{2}-r^{2}\right) d v
$$

spectroscopic measurement: (x, y, z) fixed in space

- If $Q_{0} \neq 0$ then $\left|Q_{0}\right|>\left|Q_{\text {sp }}\right|$
[Q] = Coulomb \times meter 2
(often: e x cm²) or barn
- For $\mathrm{I}=0$ or $1 / 2 \rightarrow \mathrm{Q}_{\mathrm{sp}}=0$ altough $\mathrm{Q}_{0} \neq 0$
- Q_{0} can be determined directly by Coulomb excitation of rotational levels

Nuclear moments: electric quadrupole moment

- Results of measurements
- magic numbers \rightarrow spherical shapes
- prolate shape is dominating for large A
- Sometimes very strong deformation: superdeformation
- deuteron: $\mathrm{Q}=0.00182$ barn tough only 1 proton!
- deuteron is 96% in s-state ($\mathrm{l}=0$) and 4% in dstate (l=2) \rightarrow reason for the magnetic moment anomaly $\left(\mu_{\mathrm{d}} \neq \mu_{\mathrm{p}}+\mu_{\mathrm{n}}\right)$
- Deformed nuclear shape: prolate, oblate (based on Q_{0})

Nuclear moments: Parity

- Quantummechanics - Schrödinger equation: success in e.g. atomic levels and alpha-decay

Hamiltonian of Schrödinger equation

$$
\hat{H}=-\sum \frac{\hbar^{2}}{2 m_{i}}\left(\frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{\partial^{2}}{\partial y_{i}^{2}}+\frac{\partial^{2}}{\partial z_{i}^{2}}\right)+U\left(x_{i}, y_{i}, z_{i}\right)
$$

kinetic energy

- Schrödinger equation has mirror symmetry $\rightarrow \Psi(r)$ has mirror symmetry as well!!
what happens when flipping the sign of $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)$ to $\left(-\mathrm{x}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}},-\mathrm{z}_{\mathrm{i}}\right)$?

$\psi(-x,-y,-z)= \pm \psi(x, y, z)$
- $\mathrm{P}=+1$ parity is even; $\mathrm{P}=-1$ parity is odd (by definition, $\mathrm{P}=+1$ for a nucleon)
- Parity of a complex system: $P_{A+B}=P_{A} P_{B}(-1)^{1 A}(-1)^{B B}(I A, I B$: quantum number of relative orbital angular momentum of A and B in the center of mass system
- Depending on the Hamiltonian, P is conserved: e.g. in strong and in EM
- At large excitation energies, overlapping states \rightarrow mixed parity

Nuclear moments: Isospin

- Some light isobar nuclei (e.g. mirror nuclei) are very similiar: excitation energies, spin, parity \rightarrow multiplets

- if $n-n=p-p=n-p$ (separating the effect of the Coulomb potential) then neutron = proton!
- spin formalism:

$$
|\vec{T}|=T(T+1)
$$

$$
T_{3}=T, T-1, \ldots,-T
$$

($\mathrm{M}=2 \mathrm{~T}+1$ different value)
T: isobar-spin or isospin vector
T : isospin quantum number

- neutron and proton are doublets $\rightarrow M=2 \rightarrow T_{N}=1 / 2 \rightarrow T_{3(n)}=-1 / 2$ and $T_{3(p)}=1 / 2$
- for a nucleus with $\mathrm{Z}, \mathrm{N}: T_{3}=(\mathrm{Z}-\mathrm{N}) / 2 \rightarrow T \geq|\mathrm{Z}-\mathrm{N}| / 2 \quad$ (mostly $=$ in g.s.)
- isospin is conserved in nuclear interactions but not in EM (y decay) and weak!

Summary

- Historical aspects of nuclear physics: Rutherford, Cadwick
- Radii, densities
- Mass
- Spin
- Magnetic dipole moment
- Electric quadrupole moment
- Parity
- Isospin

