
Exactly solvable potentials

Local  potentials  have  been  used  to  model  the  interactions  of  the  subatomic  world  ever  since  the
introduction  of  quantum  mechanics.  Some  of  these  (like  the  Coulomb  potential)  do  not  differ
essentially from the forces observed in nature, while most of them (like the harmonic oscillator, for
example) represent approximations of the actual physical situation. The potential shape, defined by the
potential type and the parameters in it is usually chosen in a way that reflects the physical picture our
intuition associates with the problem; therefore we can define attractive or repulsive, short-range or
long-range potentials, etc. The concept of potentials is deeply rooted in the thinking of most physicist.
This  is  perhaps  not  surprising,  because  the  most  elementary examples  introduced  at  the  dawn of
quantum mechanics  still  form essential  part  of  any quantum mechanical  course,  and  also  play  a
fundamental role in the formulation of most physical models of the microscopic world. 

Some of the potentials used in quantum mechanics are exactly solvable. This means that the energy
eigenvalues,  the bound-state wave functions and the scattering matrix can be determined in closed
analytical form. The range of these potentials has been extended considerably in the recent years by
investigations inspired by some novel symmetry-based approaches. The concept of solvability has also
been extended: one can talk about conditionally exactly or quasi-exactly solvable potentials too, in
addition  to  the  "classical"  exactly  solvable  examples.  Due  to  these  developments  more  and  more
interactions can be modeled by making advantage of the increasingly flexible potential shapes offered
by solvable potentials.  Their  solutions can be applied directly,  or can be combined with numerical
calculations.  In  the  simplest  case  analytical  calculations  can  aid  numerical  studies  in  areas  where
numerical techniques might not be safely controlled. This is the case, for example, when bound-state
wave functions  with  arbitrary node numbers  are  required,  for  certain  singular  potentials,  complex
potentials,  or in situations,  when the physical system crosses a critical  point.  As the next  level  of
complexity,  analytical  solutions  can  supply a  basis  for  numerical  calculations.  This  makes  exactly
solvable  problems  indispensable  even  in  the  age  of  rapidly  developing  computational  resources.
Besides their role in describing realistic physical problems, solvable quantum mechanical potentials
also  represent  an  interesting  field  of  investigation  in  their  own  right.  This  is  largely  due  to  the
mathematical elegance and beauty associated with the symmetries of these problems. 

The exact description of quantum mechanical potential problems is usually performed by  transforming
the  Schrödinger  equation  into  the  second-order  differential  equation  of  some  special  function  of
mathematical physics. Depending on the choice of this function and on the variable transformation,
various classes of exactly solvable potentials can be obtained. The most widely discussed potentials
belong to the six-parameter Natanzon class, in which case the solutions of the Schrödinger equation are
obtained in terms of a single hypergeometric or confluent hypergeometric function. For bound states
these special functions reduce to Jacobi and generalized Laguerre polynomials, respectively. The most
widely known exactly solvable potentials (harmonic oscillator, Coulomb, Pöschl-Teller, etc.) are two-
or  three-parameter  Natanzon-class  potentials,  and belong  to  the  so-called  shape-invariant  potential
class. 

Supersymmetric quantum mechanics (SUSYQM) is another standard tool of analysing exactly solvable



potentials. This method can be used to generate new exactly solvable potentials from known ones such
that the two potentials are isospectral, except perhaps for their ground states. The two potentials are
called supersymmetric partners and their degenerate levels are connected by a first-order differential
operator. The solutions of the new potential generally contain two terms: one with the special function
appearing in the solution of the original potential and one with its first-order derivative, so the new
potential of usually outside the Natanzon-class. However, in special situations the two terms can be
reduced  to  only  one  by  applying  recurrence  relations,  so  the  new  potential  will  have  the  same
mathematical structure, and the two potentials will differ only in the parameters appearing in them. In
this case the potential belongs to the shape-invariant class mentioned earlier.  

There  are  several  ways  to  obtain  exactly  solvable  potentials  beyond  the  Natanzon  class.  One  is
considering further special functions of mathematical physics (e.g. the Bessel function, Heun functions,
etc.), while another one is considering the linear combination of several special functions of the same
type in the solutions. 

A  comprehensive  review  on  generating  and  classifying  exactly  solvable  potentials  both  in  the
conventional and in the PT-symmetric setting can be found in Chapter 7 of ''PT Symmetry in Quantum
and Classical Physics'' by C. M. Bender et al., World Scientific Europe Ltd., London, 2019. 

Studies focusing on conventional (hermitian) quantum mechanics

Our activity in  this  field mainly concerned the exact  solution  of  the  one-dimensional  Schrödinger
equation. We gave a systematic treatment of shape-invariant potentials [1], which contain the most
well-known textbook examples for solvable potentials (Coulomb, harmonic oscillator, Morse, Pöschl-
Teller, Scarf, Rosen-Morse, Eckart) and introduced a straightforward classification scheme for them



[1,2]. We extended the same method to describe several three- and four-parameter members of the
more general six-parameter Natanzon potential class [3-8]. 

We also applied the techniques of supersymmetric quantum mechanics (SUSYQM) to discuss shape-
invariant  [9,24],  Natanzon-class  [10]  and  conditionally  solvable  potentials  [11],  extending  the
investigations also to complex potentials [10,12]. The relation of SUSYQM and su(1,1) potential and
spectrum generating  algebras  has  also  been  explored  for  shape-invariant  potentials  [13].  We also
applied a semi-numerical method (the asymptotic iteration method) to obtain the bound-state energy
eigenvalues of some quasi-exactly solvable potentials and their supersymmetric partner [22]. 

We extended our analysis to various types of potentials beyond the Natanzon class. We considered the
bi-confluent  Heun  functions  to  generate  the  solutions  of  the  sextic  oscillator,  which  also  has  the
property  of  being  quasi-exactly  solvable  (QES).  This  means  that  the  solutions  of  the  lowest  few
eigenstates  can be obtained in closed form, for certain constraints  of the potential  parameters.  We
discussed how and when the QES solutions can be obtained from the alternative treatment [25,26]. 

As another example for potentials beyond the Natanzon class, we discussed in a pedagogical work
SUSYQM methods to obtain the rational extension of the radial harmonic oscillator, the solutions of
which are written in  terms of  X1-type  exceptional  Laguerre polynomials [27].These potentials  are
expressed  in  terms  of  two  conventional  generalized  Laguerre  polynomials,  indicating  that  the
corresponding potentials are, indeed, outside the Natanzon class.  

The radial version of the Scarf II potential is another example for such potentials, because in this case
the solutions are expressed in terms of both independent solutions of the hypergeometric differential
equation, which have to be matched at the origin [28]. (This mechanism is the same as the one from
which the Woods-Saxon potential can be obtained from the Rosen-Morse II potential.) We investigated
the dependence of the S-matrix poles on the choice of the parameters.     

Our  further  activity  concerned  developing  Green's  operator  techniques  [14,15]  for  the  Coulomb
potential and one of its generalizations [6], combining the orbital structure of solvable potentials with
spin degrees of freedom [16], as well as deriving some exact solutions of the Dirac equation [17]. As a
further result we  extended our investigation to Schrödinger equations with position-dependent mass
(PDM) and introduced a method by which exactly solvable PDM problems can be generated with mass
functions that are finite and non-zero everywhere [18]. Inspired by some of our results concerning the
PT-symmetric Coulomb potential, we investigated the conditions under which the M(x) function can
take on negative values [23].  

We used the quasi-exactly solvable sextic oscillator to describe shape phase transitions of certain nuclei
within the Bohr Hamiltonian [19]. By fitting the energy spectrum we described several nuclei that are
near the phase transition that takes place between the spherical and gamma-unstable shape phases [21].
We formulated a parameter-free condition for the location of this phase transition [20]. 



Thematical index 

Items denoted by PTnn refer to publications on PT-symmetric quantum mechanics in the ensuing 
section

Exactly solvable potentials
- Shape-invariant potentials [1, 2, 9, 12, 13, 24]
- Natanzon-class potentials [3, 4, 5, 6, 7, 8, 9, 10, 18, PT26]

- Potentials beyond the Natanzon class [25, 26, 27, 28]

Conditionally exactly solvable potentials [11]

Quasi-exactly solvable potentials [19, 20, 21, 22]

Exact expressions for normalization constants [PT8, PT10, PT11] 

SUSYQM [9, 10, 11, 12, 22, 24]

Algebraic aspects [6, 13]

Spin-dependent and relativistic problems [16, 17]

Green's operator techniques [14, 15]

Problems with position-dependent effective mass [18, 23]

Applications in nuclear physics [19, 20, 21]
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Studies focusing on PT-symmetric quantum mechanics

PT-symmetric quantum mechanical systems are invariant under the simultaneous action of the P space
and T time inversion operations. These systems possess non-hermitian Hamiltonians, still they have
some characteristics similar to hermitian problems. The most notable of these is their discrete energy
spectrum, which can be partly or completely real. Typically the transition from the fully real energy
spectrum to the complex one occurs when the non-hermitian component of the Hamiltonian exceeds a
certain critical limit, and it can be interpreted as the spontaneous breakdown of PT symmetry in that the
energy eigenstates cease to be eigenstates of the PT operator then. 

Another typical feature PT-symmetric systems have in common with hermitian problems is that their

basis states form an orthogonal set with a redefined inner product as <Ψ|Φ>PT = <Ψ|P Φ>. Similarly to

the hermitian setting, the so-called pseudo-norm defined by this inner product is conserved, however, a
major difference is that it  turned out to possess indefinite sign, and this raised the question of the
probabilistic interpretation of PT-symmetric systems. PT symmetry also manifests itself in scattering
aspects in that the reflection coefficient exhibits handedness. 

Perhaps the simplest PT-symmetric Hamiltonian contains a one-dimensional Schrödinger operator with
a  complex  potential  satisfying  the  V*(-x)=V(x)  relation.  A number  of  such  problems  have  been
described  by numerical  and  perturbational  techniques,  but  the  exact  analytical  solution  of  several
potentials have also been given. 

PT symmetry was put into a more general context when it was found that it is a special case of pseudo-
hermiticity, and this explains most of the peculiar features of PT-symmetric systems. It was shown that
PT-symmetric,  and in  general,  pseudo-hermitian  systems can  be mapped into  equivalent  hermitian
ones, although this mapping is technically not straightforward in general. A significant result was the
experimental verification of the existence of PT-symmetric systems which also exhibit the spontaneous
breakdown of PT symmetry [C. E. Rüter et al., Nature Physics 6 (2010) 192]. One can say that PT-
symmetric  quantum mechanics  originated  as  a  curiosity in  mathematical  physics,  but  it  took only
slightly more than a decade to reach a stage in which its practical applications seem possible. 

Our first results concerning PT-symetric potentials was the systematic exploration of conditions under
which  shape-invariant  potentials  possess  real  [1]  and complex [2]  energy spectrum.  These  studies
revealed that the PT-symmetric Coulomb potential cannot be defined on the real x axis, rather one has
to define an integration path in the complex x plane [3]. This result also raised several further questions
concerning the definition of the PT-symmetric Coulomb potential, which have been settled later both
for bound [4] and scattering states [5]. 

In  a  series  of  papers  we  discussed  various  aspects  of  PT-symmetric  shape-invariant  potentials,



including the conditions for the occurrence of the spontaneous breakdown of PT-symmetry [8,9,13,26],
the  explicit  expression  for  the  pseudo-norm  [8,10,11,12]  and  the  transmission  and  reflection
coefficients [6,7,12]. We discussed the asymptotic properties of PT-symmetric potentials and pointed
out that a dominant (i.e. asymptotically non-vanishing) imaginary potential component may lead to
unusual features (e.g. the cancellation of complex energy eigenvalues and the spontaneous breakdown
of PT symmetry, handedness of the T(k) transmission coefficient) [25].

We extended our analysis to wider classes of solvable potentials. In particular, we considered some
members of the Natanzon potential class [14,15,26] We constructed a three-parameter potential [26]
that contains all the shape-invariant potentials as a special limit, as well as the Dutt-Khare-Varshni
potential [15]. We showed that the breakdown of PT symmetry, i.e. the complexification of the energy
eigenvalues occurs in this case through the gradual mechanism, starting from the ground state. We also
explored how the PT-symmetric version of the general Natanzon potentials can be introduced [27]. This
study also revealed why the breakdown of PT symmetry cannot occur for the PII type shape-invariant
potentials, i.e. for the Rosen-Morse I, II and Eckart potentials. We demonstrated that the accidental
crossing of energy levels, which was found previously for a few PT-symmetric potentials is a general
feature of those PT-symmetric Natanzon-class potentials, for which the q quasi-parity quantum number
can be defined [28].     

We also studied PT-symmetric conditionally exactly solvable [16] potentials, as well as exactly non-
solvable potentials [17]. In the latter case we presented a thorough analysis of the finite PT-symmetric
square  well  potential  [29].  We  found  that  this  potential  can  support  only  states  with  real  energy
eigenvalues,  similarly  to  the  Rosen-Morse  II  potential,  and  we  attributed  this  finding  to  their
asymptotically non-vanishing imaginary potential component. We also discussed the special common
limit of these two potentials, i.e. the one containing a real Dirac delta and an imaginary step function
[30].  

Based on the results for one-dimensional exactly solvable PT-symmetric potentials, we also discussed
such potentials  in two and three spatial  dimensions,  which can be factorized into one-dimensional
problems by means of separating the radial and angular variables [18-20]. 

We also discussed the relation of PT symmetry with Lie algebraic and supersymmetric formulations of
non-relativistic potential problems [21]. In particular, we pointed out the importance of the so(2,1) [6]
and so(2,2) [7] algebras as potential  algebras for the Scarf II  and the Pöschl-Teller  potentials.  We
demonstrated that while for unbroken PT symmetry the Scarf II potential has two distinct SUSYQM
partners,  the  spontaneous  breakdown  of  PT  symmetry  results  in  the  manifest  breakdown  of
supersymmetry  for  this  system  [22].  We  also  derived  general  conditions  for  the  simultaneous
occurrence of PT symmetry and supersymmetry in quantum mechanical potential problems [23]. 

Thematical index 

Shape-invariant potentials
 - in general [1, 2] 



 - Coulomb [3, 4, 13, 25]
 - Scarf II [6, 7, 8, 9, 22, 24, 25] 
 - Rosen-Morse I [11, 23]

 - Rosen-Morse II [12, 25]
 - Generalized Pöschl-Teller [7]

Natanzon-class potentials [27,28]

Conditionally exactly solvable potentials (beyond the Natanzon class) [16]

Exactly non-solvable potentials [17,29,30]

Exact expressions for the pseudo-norm and normalization constants [8,10,11,12

Spontaneous breakdown of PT symmetry

 - Sudden mechanism [2, 8, 9, 13, 14, 19, 22, 24] 
 - Gradual mechanism [15, 17, 26] 

 - Does not happen [10, 11, 12, 29, 30]

SUSYQM [21, 22, 23]
Algebraic aspects [6, 7, 21] 
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